行业新闻 NEWS

更多 >>

技术文章 ARTICLE

更多 >>

企业动态

联系我们

如果你有任何问题,意见或建议,请及时与我们联系,谢谢您的合作。
GO 》

电话:010-57263783
传真:010-82463361
手机:13521062863
联系人:李先生
网址:http://www.byjk.cn
邮箱:bjbyjk@bjbyjk.com
邮编:100096
地址:北京市昌平区西三旗北京轮胎厂
工厂:北京市昌平区小沙河工业园B1区

公司新闻 NEWS

城市排水系统由化粪池、排水管网、泵站、污水处理厂等设施组成

来源: 北京莱金源水处理*有限公司

     城市排水系统由化粪池、排水管网、泵站、污水处理厂等设施组成,是城市重要的基础设施,其中排水管网集污废水、雨水的收集、输送等功能于*体,对城市的未来发展水平起到了决定性的作用。随着城市化进程的不断推进,城市地上建设规模不断扩大,而地下排水管网却往往被忽略。
  本研究概述了排水管道中生物膜的菌群结构和分布特征,重点阐述与分析了管道内SRB和MA的代谢机理及相互关系,总结了管道废气控制*对SRB、MA的不同抑制效果,从而为城市排水管网运行维护提供理论支撑。
  1 排水管道中生物膜的菌群分布特征
  城市排水管道中的污水以生活污水为主,含有丰富的碳、氮、磷等营养物质,且管道内部为密闭空间,为厌氧菌的生长提供了有利条件。实际管道生物膜中的细菌以拟杆菌纲、变形菌纲、变形菌纲为主,古菌则以甲烷鬃毛状菌科、甲烷球菌科为主。SRB还原硫酸盐所产生的H2S是管道腐蚀的主要原因,同时,研究表明,污水在管道输送途中削减了大量sCOD,其中72%的削减量来自于产甲烷过程。因此,SRB和MA是管道中的2种关键菌群,目前,国内排水管道的材质多为混凝土,管道内壁粗糙不平、比表面积较大,虽然水泥的水化过程产生了较高的碱度,但H2S的积累逐渐降低了液相pH,同时腐蚀管道表面,使微生物能够不断侵入管壁内部,进*步加剧管道结构破损。 排水管道中生物膜的菌群分布与污水处理中颗粒污泥的微生物群落结构相似,SRB、MA存在分层分布的现象。由于MA的附着性较高、对厌氧环境要求更严格,MA主要分布在生物膜内部,SRB则通常生长在表面。污水中的硫酸盐进入生物膜后迅速被SRB还原利用,限制了SRB向内部增殖。而sCOD难以被完全消耗、能够向深层继续渗透,因此MA在内层占据优势。
  管道生物膜的厚度约为700 μm,SRB主要分布在0~300 μm的外层,MA则主要分布在250 μm以下的内层。从丰度来看,SRB在总微生物中所占比例从生物膜表面的20%逐渐下降到400 μm处的3%,MA占比则从生物膜表面的3%增加到700 μm处的75%。管道底泥*般厚度达数厘米,底泥的*上层是硫化物还原的主要场所,产甲烷的主要场所更深,范围约占2.5~3.5 cm。SRB与MA两者的相对丰度也随深度而变化,SRB的相对比例从底泥表面的35%逐渐降至1 cm处的4%,2 cm以下SRB的存在可忽略不计。
  2 排水管道中生物膜主要菌群的代谢机理
  控制管道中H2S、CH4的根本途径是深入了解SRB、MA的菌群结构和特征,从代谢层面上抑制这2类菌群的生长繁殖。
  2.1 SRB分类及代谢机理
  SRB能够利用氢、乙酸、高*脂肪酸、醇、芳香族化合物、部分氨基酸、糖、多种苯环取代基的酸类及长链溶解性烷烃等作为电子供体,除硫酸盐外,富马酸、二甲基亚砜、磺酸盐等也可作为某些SRB的*终电子受体,*终产生H2S、乙酸、CO2等代谢终产物。
  硫酸盐的还原途径如图2所示,SO42−/SO32−本身氧化还原电位过低,SO42−须被激活成强氧化剂APS,之后再还原为S2−。污水中的有机碳源被降解时所产生的ATP和高能电子在这*途径中被利用。某些SRB还可以利用硝酸盐作为*氮源,进行同化代谢。 
  壁面剪切力
  管道内不同的水力条件直接影响着生物膜的形态、厚度和组成,其中,污水流速对生物膜的影响可以用壁面剪切力来表征。随着剪切力增加,管道生物膜总微生物丰度增高、而多样性下降,氧吸收速率和污染物削减效率均降低;生物膜在初始适应阶段由于分泌大量EPS而逐渐变厚,但到了后期成熟阶段,上层松散的生物膜逐渐脱落,*终整体厚度变薄。当剪切力从1.12 Pa提高到1.45 Pa时,SRB占生物膜总菌群的数量比例从0.036%减少至0.027%,而MA的比例从22.87%增长至69.75%,这可能是由于生物膜表面的SRB更容易受到水力剪切和冲刷作用,而MA附着性较高。此外,紊动的水流有利于DO从水相向生物膜扩散,进而间接影响了MA与SRB的分布。
 3 结论
  1)城市排水管道内丰富的营养物质和相对密闭的空间,为微生物在粗糙管壁表面生长繁殖创造了良好的环境条件。其中,SRB和MA是管道微生物中*重要的2大菌群,与管道腐蚀、管道温室气体排放、管道安全事故息息相关。目前国际上多采用投加铁盐、硝酸盐、亚硝酸盐等尝试,抑制SRB和MA的生长,对管道腐蚀、臭气溢出起到调控作用。
  2)SRB和MA种类繁多,均可利用乙酸、氢气作为基质,因此存在着*定的竞争关系。总体上,SRB的耐受性较强,更能够抵御*端pH、硫化物积累、注氧、投加抑制剂等多种影响因素,且SRB可利用的基质范围较广、底物亲和性较高,纯培养条件下能够在竞争中淘汰MA;在生物膜成熟及更新前期,比增长速率较高的SRB也能快速占据优势。
  3)在管道生物膜的特殊微环境中,SRB和MA可以共存,两者分内外2层分布,各自进行产气反应;由于MA处于生物膜及底泥的深层,在短期或间歇投加抑制剂的情况下,MA仍能够保存活性,故往往需要长期、连续投加抑制剂才能控制CH4的产生。因此,在选用抑制剂控制管道废气时,既要针对SRB的耐受性考虑增加单*投加量,也要针对MA的生物膜保护机制延长投加时间。
  4)对于管道废气控制*及原理的研究虽已比较全面,但针对SRB、MA中不同菌种的特性及相互关系的研究仍不够深入,部分抑制剂的作用原理尚不清楚,且抑制剂投加策略的研究多限于小试实验中,未能根据实际管道中变化的污水特性进行调整。
  5)随着分子生物学手段的不断进步,需要定量化分析SRB、MA的数量及比例,研究两者的垂直分布和沿程变化,进*步探究不同环境条件下的优势种群组成及其对应的活性、代谢途径,从而寻找*有效的抑制措施。同时引入在线监测设备,根据管道内微环境的周期变化,结合多种抑制*、采用动态调控策略,并应用到实际管道维护工作中去。
在线客服
>
在线客服