行业新闻 NEWS

更多 >>

技术文章 ARTICLE

更多 >>

企业动态

联系我们

如果你有任何问题,意见或建议,请及时与我们联系,谢谢您的合作。
GO 》

电话:010-57263783
传真:010-82463361
手机:13521062863
联系人:李先生
网址:http://www.byjk.cn
邮箱:bjbyjk@bjbyjk.com
邮编:100096
地址:北京市昌平区西三旗北京轮胎厂
工厂:北京市昌平区小沙河工业园B1区

公司新闻 NEWS

含磷废水的处理包括生物法、化学沉淀法、吸附法、离子交换法、自清洗过滤器等分离手段将这些固体同水体分开

来源: 北京莱金源水处理技术有限公司

含磷废水的处理包括生物法、化学沉淀法、吸附法、离子交换法、自清洗过滤器等分离手段将这些固体同水体分开
    目前,水体富营养化现象备受人们关注,它所导致的水质恶化严重影响了人们的生产和生活。富营养化是指在人类活动的影响下,生物所需氮、磷等营养物质大量进入湖泊、河流等缓流水体,引起藻类及其它浮游生物迅速繁殖,水体溶解氧下降,水质恶化,鱼类及其它生物大量死亡的现象。富营养化水体中磷的来源主要包括外部(农业施肥、含磷工业废水不达标排放等)进入水体的磷,以及水体内部自身底泥沉积物释放出的磷。其中,外源污染是磷的主要来源,湖泊、水库、河流中的磷80%来自于污水排放。
  1 含磷废水的处理方法
  在含磷废水处理技术中,人们采用了各种工艺来除磷,主要包括生物法、化学沉淀法、吸附法、离子交换法等以及这些方法的综合运用。所有的除磷技术都是利用磷的循环转化过程,使废水中的磷转化为不溶性的磷酸盐沉淀,或利用结晶和吸附作用,或利用细胞合成将磷吸收到污泥细胞中的过程,然后再通过沉淀、过滤等分离手段将这些固体同水体分开,从而将磷从污水中去除。
  1.1 生物法
  1.1.1 生物法除磷原理
  生物除磷技术于80 年代在欧洲得到了广泛的使用。它是一种利用微生物的生理活动(新陈代谢),将磷从污水中转移到污泥细胞中,从而排出处理系统的除磷技术;其除磷原理是基于聚磷菌在厌氧条件下释放磷及在好氧条件下过剩摄取磷的原理,通过好氧- 厌氧的交替运行来实现除磷的方法。其中,具体的生物除磷过程为:在厌氧条件下,兼性细菌聚磷菌受到抑制,它必须吸收污水中的有机碳源(溶解性BOD 的转化产物,即低分子挥发性有机酸(VFAs))来维持生存,并在细胞内将有机物转化为胞内碳能源储存物聚-β- 羟基丁酸酯(PHB)/聚羟基戊酸(PHV)贮存起来,该过程所需的能量正是来自于聚磷的水解以及细胞内糖的酵解,从而完成磷的厌氧释放。而在好氧条件下,聚磷菌的活力得到恢复, 它利用PHB/PHV 的氧化代谢产生的能量吸收超出自身生长所需的几倍的磷,并以聚磷酸盐的形式储存。有关资料显示,在好氧条件下吸收的磷是厌氧条件下放出磷的11 倍之多,因此水体中的磷得以大量吸收到细菌细胞中,再随剩余污泥排出系统,从而实现磷的去除。
  1.1.2 生物法除磷特点
  生物除磷是一种较为经济的除磷技术,该方法在合适条件下,可去除污水中90%的磷,现在多用于城市污水处理厂磷含量低的情况。其特点如下:
  (1)生物法除磷对废水中有机物浓度(BOD)依赖性强。进水的BOD5/TP 比值大小,将影响除磷效果。一般认为,若要使出水中的磷含量控制在1.0mg·L-1 以下,进水中的BOD/TP 应控制在20~30。因此,生物除磷及脱氮工艺适合处理中高BOD5(≥200 mg·L-1)的污水。
  (2)生物处理效果受环境温度、pH、溶解氧等因素的影响。生物除磷适于在中性和微碱性条件下进行。
  (3)泥龄长短对除磷脱氮效果亦有直接影响,因而生物处理部分应及时排泥,否则厌氧菌会分解污泥中的聚磷,导致磷的二次释放。
  1.1.3 生物法除磷研究现状
 一般认为EBPR 需要最佳的厌氧水力停留时间来获得稳定的磷去除率。
  总之,生物除磷技术能对原有废水生化处理设备进行合理利用,同时能去除有机物,运行费用较低;其缺点是工艺运行稳定性差,除磷的效率随进水水质(酸碱度、有机物浓度、磷含量)及边界条件(温度等)的变化波动性很大,不能进行磷回收,很多情况下,出水很难满足磷的排放标准,因此需要添加化学除磷技术作辅助处理。
  1.2 化学法
  化学沉淀除磷是应用最早、使用最广泛的一种除磷方法。化学除磷是通过投加化学药剂,使污水中的磷转化为不溶性的磷酸盐沉淀,然后通过固液分离转移到污泥中,以此来达到除磷目的。该方法主要是通过调整pH,控制金属离子与磷的浓度比来达到形成最稳定的难溶性金属磷酸盐的目的。其中,磷的化学沉淀分为4 个步骤:沉淀反应、凝聚作用、絮凝作用、固液分离。按工艺流程中药剂投加点的不同,磷酸盐沉淀工艺有前置沉淀、协同沉淀和后置沉淀3 种类型。
  1.2.1 化学除磷原理
  在化学沉淀中,一般认为磷酸盐沉淀是配位基参与竞争的电性中和沉淀,即通过PO43- 与金属盐离子的化学沉淀作用加以去除。可以有效除磷的金属离子有:钙、铁、铝、镁等,通常使用的3 种类型金属沉淀剂为铁盐、铝盐、石灰,磷酸盐沉淀中化学剂的水解产物可与磷酸盐发生化学吸附并进行络合反应,形成络合物共同沉淀。
  1.2.2 化学除磷特点
  化学除磷本质上是一种物理化学过程,其优点是处理效果稳定可靠,操作简单且弹性大,污泥在处理处置过程中不会重新释放磷,耐冲击负荷的能力也较强。不足之处是化学除磷法会产生大量含水化学污泥,处理难度大。此外,药剂费用较高,由此造成的残留金属离子的浓度也较高,出水色度增加。
  1.2.3 化学除磷研究现状
  在多年研究的基础上,提出了一种新型污水除磷技术- 固定化活性氧化镧的化学- 吸附除磷技术,利用活性氧化镧的多孔、巨大表面积和高分散性,将其负载在多孔性的载体上,并与化学除磷相结合,除磷效果较好,且反应完全后可对其回收,避免了二次污染问题。
  开发新型的混凝剂,以降低药剂费用和提高除磷效果,研究结合生物法协同除磷的方法,在废水除磷的同时考虑磷的回收技术将是化学除磷的发展趋势。
  1.3 吸附
  1.3.1 吸附法除磷原理
  在废水处理尤其是工业废水处理中,吸附法是一类重要的物理化学方法。它是利用某些多孔或大比表面积的固体物质对水中磷酸根离子的亲和力来实现废水除磷的一种方法[1]。反应过程中的吸附除磷,包括固体表面的物理吸附、离子交换形式的化学吸附以及固体表面的沉积过程,并进一步通过解吸处理可以回收磷资源。
  吸附法中所使用的吸附剂多采用多孔状结构或粉状物质。吸附剂与吸附质之间的作用力除了分子之间的引力以外,还有化学键力和静电引力。吸附法的关键在于寻找一种恰当的吸附剂,来实现对废水的除磷过程。其中,除磷吸附剂的选择要求满足以下条件:(1)高吸附容量;(2)吸附速度快;(3)无有害物溶出;(4)吸附剂再生容易、性能稳定;(5)原料易得并造价低。
  1.3.2 吸附法除磷研究现状
  近些年的废水处理中,许多低成本而且易获得的材料,例如活性红壤、高炉炉渣、钢渣、矿渣等都被广泛的研究,且除磷都已有成功的实例。
  吸附法与化学沉淀法相比,吸附速度快,操作简易,并且吸附产物可以回收利用,不会对环境产生二次污染。其缺点是吸附剂的抗干扰性、溶解损失以及再生方面仍然存在一些问题。因此,寻求一种吸附容量方面性能优异的高效吸附剂,或者利用废渣改性提高除磷效果是吸附法除磷的发展趋势。
  1.4 结晶法除磷
  1.4.1 结晶法除磷原理
  结晶法除磷就是向已含钙盐的含磷废水中添加一种结构和表面性质与难溶磷酸盐相似的固体颗粒,破坏溶液的亚稳态,在作为晶核的除磷剂上析出羟基钙磷灰石,从而达到除磷目的。
  1.4.2 结晶法除磷的特点
  (1)采用结晶法除磷,磷在晶核表面析出,仅仅是晶核变大,这种工艺的优点在于它提供了沉淀剂,因此处理过程中产生的污泥量比化学沉淀法少的多,结晶法所获得的产品还可作为肥料生产中的原料被回收利用。
  (2)结晶法除磷的主要影响因素为废水pH、反应器中的除碳酸效果的好坏以及晶种的好坏。
  由于磷灰石的溶解度随碱度的升高而降低,因此加大废水的pH,有利于磷的去除。动态运行时,水力负荷也是一个重要因素。另外,不同的载体对晶种的培养影响较大,多孔陶粒与石英砂对比试验表明,采用多孔陶粒作载体形成结晶体效果较好,用该晶种的连续流固定床除磷,获得令人满意的效果。
  结晶法除磷一般采用过滤式通水法,其占地面积小,管理费用低,易于控制,但当污水中存在大量有机物时,易造成除磷剂的失效,大量的固体悬浮物成分也会引起通水反应塔的堵塞。因此该方法作为一种高级处理方法是可行的,对于防治富营养化、污水的深度除磷是极为有效的。
  结晶法可以和其它方法联用除磷。其中混凝沉淀与结晶综合处理技术可以处理高浓度含磷废水且达到较高的除磷率,是一种可靠的高浓度含磷废水处理方法。
  1.5 含磷废水的其它处理方法
  除上述应用最广的除磷方法外,还有离子交换法、电渗析法等,土地处理系统也能用于废水脱磷。
  1.5.1 离子交换法
  离子交换法是利用多孔性的阴离子交换树脂来除磷的一种方法,反应的一般形式可总结为:
用离子交换法去除磷存在着树脂药物易中毒、树脂难再生、只能选择性的除去污水中的某种离子、交换容量低和选择性差等问题,因而这种方法难以得到实际应用。
  1.5.2 电渗析除磷
  电渗析除磷是一种膜分离技术。电渗析室的进水通过多对阴阳离子渗透膜,在阴阳膜之间施加直流电压,含磷和含氮离子以及其他溶解离子在施加电压的影响下,体积小的离子会通过膜而进到另一侧的溶液中去,从而实现分离。在利用电渗析去除磷时,预处理和离子选择性显得特别重要。在处理时必须对浓度大的废水进行预处理,而高度选择性的防污膜仍在发展中。事实上,电渗析除磷只是浓缩磷的一种方法,它自身无法从根本上除去磷。
  1.5.3 土地处理系统法
  土地处理系统是在人工可控条件下将废水投配到土地上,经土壤植物系统完成一系列物理、化学、生化的净化过程。人工湿地对磷的去除作用包括基质的吸收和过滤、植物吸收、微生物去除及物理化学作用。基质中的吸收和过滤对无机磷的去除作用,因填料不同而存在差异,若土壤中含有较多的铁、铝氧化物,有利于生成溶解度很低的磷酸铁或磷酸铝,使土壤固磷能力大大增加;若以砾石为填料的湿地,砾石中的钙可以生成不溶性的磷酸钙而从废水中沉淀去除。
  2 含磷废水中磷的回收利用
  磷一方面会造成水体富营养化,另一方面,又是植物生长不可或缺的因素。目前,全球约80%的磷矿用于生产各种磷肥,其余用于制造黄磷及其他磷酸盐类,应用领域涉及化工、轻工等工业部门。然而,随着磷资源的大量开采与消耗,磷的不可再生性及其对于生命的不可替代性,都决定了实现磷资源的循环利用将成为未来可持续发展过程中亟待解决的问题。因此,废水除磷的最高目标就是实现从污水处理的不同环节回收磷资源并重新利用。
      3 废水除磷技术的发展趋势
  目前,各种除磷方法都分别有自己的优缺点。相比而言,生物法适于处理较低磷浓度的有机废水,并且往往需要进行二次除磷处理;化学沉淀法对高浓度含磷废水比较有效,但是需要密切注意废水的酸碱度,以达到最佳处理效果;离子交换法和吸附法对高浓度、小批量的工业废水有较好的处理效果。在选择除磷方法时,要根据当地的具体水质特性和环境条件合理地选择除磷工艺流程,即要从废水含磷量、其它离子的种类和含量、处理规模、出水要求等因素来综合考虑,以达到最佳的除磷效果。
  环境工程界的发展趋势是越来越重视廉价、高效的替代性技术,如果能充分的利用丰富的自然资源或工厂的副产品和废物来进行除磷,就会在很大程度上降低成本。由于磷自然资源有限,未来研究所关注的不仅仅是从废水中去除磷,更重要的是回收磷资源。因此,研究价格低廉、选择性好、易再生并且可回收利用磷资源的系列水处理方法已成为废水处理研究领域的发展趋势。
在线客服